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We have made mean-field calculations with a Hamiltonian obtained from two-, three-, 
and four-atom exchange in bcc solid 3He . We are able to fit the high-temperature expe 
ments as well as the phase diagram of Kummer et 01. at low temperatures. "We find two 
kinds of antiferromagnetic phases as suggested by Kummer's experiments. 

We have been able both to fit the high-tempera­
ture solid-3He magnetic datal

-
6 and, through 

mean-field theory, to obtain a phase diagram 
like that of Kummer et al.7.8 We consider only 
three mechanisms of exchange ,9-U two-atom, 
three-atom rings, and four-atom rings , and ad­
just their strengths to fit the data. 

The Hamiltonian we take is of the form12 

(1 ) 

where the sum over v indicates "a sum over the 
neighbors of site i. The (7'S are Pauli spin ma­
trices. Ordinary two-atom exchange contributes 
negatively to J 1 • Three-atom-ring exchange con­
tributes positively to J 1 and J 2 • Four-atom-ring 
exchanges are of two kinds because there are two 
kinds of closed four-atom circuits with nearest­
neighbor steps. One is folded (F) so that both 
pairs of opposite corners of the quadralateral are 
second neighbors. The second kind is planar (P) 
diamond shaped so that ends of one diagonal are 
second neighbors and ends of the other diagonal 
are third neighbors. We have made calculations 
using both kinds of four-atom rings but we are 
able to fit the data using only the F-ring exchang­
es. The F-ring exchanges contribute negatively 
to J 1 and J 2 and to two kinds of W1 ·(2)(a2 ·(3 ) 

terms ("(74"), one where the dot products are be­
tween first neighbors and one where they are be­
tween second neighbors. 

We solved the mean-field equations on the as­
sumption that one of two antiferromagnetic states 
could exist: (i) the normal (spin-flop) antiferro­
magnetic (naf) phase, where the two simple cubic 
sublattices are the magnetic sublattices; and 
(ii) the simple cubic antiferromagnetic (scaf) 
phase, where each of the simple cubic sublattic­
es is itself antiferromagnetic. The spins on the 
simple cubic sublattices are 'rotated 90° about 13 
with respect to each other because this mini­
mizes the nearest-neighbor (74 term, which en-
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ters JC with an overall positive sign. 
Without the (74 terms in JC only these two struc­

tures are possible in mean-field theory when on­
ly J 1 and J 2 are nonzero. Without proof, we 
have assumed that consideration of these two 
phases is adequate even when the (74 terms are 
present. 

The computation proceeded by examining at 
each value of T and B all solutions of the mean­
field equations for the scaf, naf, and paramag­
netic phases and choosing the solution with low­
est free energy. 

The high-temperature experiments can be sum­
marized by noting that the partition functionZ 
can be expressed in general in the form1S 

N- 1 InZ = In2 + ie2132 + ..• 

+~y2(1+~all3+ ... )+ ... , (2) 

where y = jJ.BI3. We note that specific heat at high 
T determines e2 and Curie-Weiss e determines 
a 1. Pressure experiments at zero field deter­
mine de2/ dV and have been used to determine e2 
by integration.1.2 Pressure experiments in mag­
netic field14 measure da1 / dV and , although some­
what self-contradictory,t5 probably imply on inte­
gration an a 1 somewhat smaller than is generally 
accepted.16 We can express the results 01 all 
high-T experiments (adjusted to 24.2 cms / mole) 
by the statements that e2 = 6.94 ± 0.3 (mK)2 mainly 
on the basis of the results of Panczyk and Adams2 

and that a 1 = - 6.25 ± 0.8 mK mainly from Kirk, 
Osgood, and Garber. 5 

The theoretical expansions are a 1 = 8J1 + 6J2 

and e2=12J12+9J22+31.5K/, where J 1 andJ2 are 
usual first- and second-neighbor exchange coef­
ficients and K 4 is the strength of the (74 term in 
the F-ring exchange. K 4 is defined so that the 
first- and second-neighbor exchange parts of the 
Hamiltonian due to F-ring exchange alone are J 1 

= 3K4 and J 2 = 2K4• 

Our fit is obtained with J l = - 0.56 mK, J 2 

= 0.175 mK, and K 4 = - 0.32 mK which lead to a l 

= - 5.7 mK and e2 = 7.2 (mK)2 and to a phase dia-
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FIG. 1. (a) Phase diagram of 3He below 3 mk as de-
termined by experiment of Ref. 7 (open circles) and
according to mean-field theory based on coefficeints
shown. (b) Inset shows how first-order transition with
critical point (CP) can be obtained with slight adjust-
ment of parameters.

gram as shown in Fig. 1(a). In Fig. 1(a) the ex-
perimental phase boundary from Kummer et al,'
is shown by the open circles. We find three dis-
tinct phases: To the right (above 1.8 mK) is the
paramagnetic phase. Below about 1.8 mK is the
naf phase. Below about 1 mK and for ~B/k below
0.45 mK is the scaf phase. The dashed line indi-
cates a separation of the naf phase into high-en-
tropy and low-entropy regions (taken as the line
where S/k = 0.4). Note that the ratios of the sizes
of exchange (two-atom:three-atom: P: F) used to
obtain this fit conflict with present theoretical
calculations. 9-11

Figure 2 shows the entropy as a function of
temperature at various magnetic fields, which
should be compared to Fig. 2 of Kummer et al.
Note that along the upper "phase" line of Fig. 1
we do not have a discontinuity in S as a function
of T but, in exact accord with Kummer et al.,
we find a rapid entropy change which becomes
smoother at higher field. The physical reason
for such a rapid entropy change without an actual
phase transition became apparent when the pa-
rameters were adjusted slightly away from a
good fit to the high-T data and a phase diagram
like that in Fig. 1(b) was obtained. In this case
we find an actual first-order transition which
ends in a critical point. Examination of the naf
phase in the case in Fig. 1(a) "under" the scaf

a fLB/k ' O.
b fLB/k = .2
c fLB/k' .4
d fLB/k = .6
e fLB/k = 1.0
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FIG. 2. Entropy versus temperature at several mag-
netic fields. This figure should be compared to Fig. 2
of Ref. 7.

region shows that a critical point also occurs in
this case but it is "hidden" by the lower-free-en-
ergy scaf phase.

Taking a hopeful stance we might identify the
naf-paramagnetic transition with the bump in
specific heat near 2 mK noticed by Dundon and
Goodkind," Halperin et al.,s and Kummer et al,'
In the eventuality that such identification cannot
be made we know that the naf-paramagnetic tran-
sition temperature is rather sensitive to im-
provements in the calculation beyond mean field.
We hypothesize, however, that the scaf-naf
boundary would be less affected because an ex-
amination of the variation of free energy with
temperature shows that a small relative energy
shift would have a large effect on the transition
temperature of the naf-paramagnetic transition
while in the case of the other transitions in Fig.
1(a) the same relative free-energy shift would
have a much smaller effect. We would therefore
expect that the second-order paramagnetic-naf
transition would move down to the region of the
other transitions in Fig. 1 so that the naf region
to the right of the dashed line and to the right of
the scaf phase might disappear.

In conclusion we have shown that there is no
problem fitting almost all available solid-3He
magnetic data with two-; three-, and four-atom
exchanges. Also we have found an amazing rich-
ness of possible behavior. The possibilities when
the full B-T-P space is explored are significant
because we find the phase diagram to be sensitive
to parameter shifts and we imagine that the ra-
tios of the presumed physical exchanges should
change under pressure.

Finally we would urge direct measurement of
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the spin structure of the various phases if at all 
possible. We note that if our phase diagram is 
not correct even spiral1

? or more complicated 
phases are not out of the question. We would al­
so urge a more careful experimental examina­
tion of the region near the bottom of the dashed 
phase line to determine if an actual critical point 
exists. 
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